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Higher order Godunov schemes for solving the equations of magnetohydrody-
namics (MHD) have recently become available. Because such schemes update the
total energy, the pressure is a derived variable. In several problems in laboratory
physics, magnetospheric physics, and astrophysics the pressure can be several orders
of magnitude smaller than either the kinetic energy or the magnetic energy. Thus
small discretization errors in the total energy can produce situations where the gas
pressure can become negative. In this paper we design a linearized Riemann solver
that works directly on the entropy density equation. We also design switches that
allow us to use such a Riemann solver safely in conjunction with a normal Riemann
solver for MHD. This allows us to reduce the discretization errors in the evaluation of
the pressure variable. As a result we formulate strategies that maintain the positivity
of pressure in all circumstances. We also show via test problems that the strategies
designed here work. c© 1999 Academic Press

1. INTRODUCTION

When the equations of magnetohydrodynamics (MHD) are written in conservative form
the pressure,P, is a variable whose value has to be derived at each timestep. In order
to derive the value of the pressure one has to subtract off the kinetic energyρv2/2 and
magnetic energyB2/8π from the total energyE= ρv2/2+ P/(γ − 1) + B2/8π , where
γ is the ratio of specific heats. Often these can be quite large relative to the value of the
pressure. For example,β = 8πP/B2¹ 10−4 are quite common in both stellar atmospheres
such as the Sun’s and in the Earth’s magnetosphere. Thus discretization errors made in
computing the total energy and the kinetic energy and magnetic energies can be large
enough to result in negative pressure. This results in an unacceptable physical situation in
the computation of MHD flows. In all the computational situations where the pathology
occurs one notices that the local fluid flow in regions whereβ is small, is typically adiabatic,
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and there are no magnetosonic shocks. In the vicinity of shocks, as long as the magneto-fluid
has a positive pressure in the region in front of the magnetosonic shock, the fluid behind the
magnetosonic shock will have positive pressure, owing to the fact that magnetosonic shocks
are compressive. The only other MHD discontinuities where the fluid actually passes through
the discontinuity are Alfv´en waves. When a parcel of fluid passes through a torsional Alfv´en
wave discontinuity its entropy is preserved. Entropy waves in MHD, just like the entropy
waves in the Euler equations, do not allow the fluid to pass through the discontinuity. The
negative pressure is, therefore, simply produced (in regions without magnetosonic shocks)
because we subtract two large numbers, that is, the kinetic energy and the magnetic energy,
from a third large number, the total energy. As long as the zones in front of a magnetosonic
shock have positive pressure, negative pressures would not be produced in magnetosonic
shocks.

A similar problem arises in the modelling of high speed fluid flows with the Euler
equations. In that case two solution strategies become possible. The first, suggested by
Ryu et al. [1], consists of using a modified entropy equation written in conservation form
instead of using the total energy equation to complete the hyperbolic system. We draw
on that strategy here in formulating a method for preserving pressure positivity in MHD
flows. The second strategy, suggested by Linde and Roe [2] relies on two facts: (a) the
fluxes of the Euler system are first-order functions of the conserved variables and (b) a
Riemann solver exists which always produces a positive pressure at the zone boundary. For
the Euler equations the Riemann solver of choice, as suggested by Linde and Roe [2], is
the exact Riemann solver for the Euler equations. Such an exact Riemann solver for the
Euler equations has been formulated by vanLeer [3]. It is important to note that, even in
the method of Linde and Roe [2], the use of the exact Riemann solver alone cannot fix the
problem completely. The reason is that discretization errors in the monotonicity-preserving
reconstruction, as well as in the flux differencing can reduce the accuracy with which
the total energy is evolved and thereby cause the pressure to become negative in certain
situations in a lowβ flow. For MHD the fluxes are not a first-order function of the conserved
variables. Also an exact Riemann solver for MHD is difficult to formulate and takes up far
too much computational time to be usable in any real numerical scheme. For this reason we
draw on the first strategy in this paper, rather than the second. The method developed here is
general in that it would apply to other schemes that use different monotonicity-preserving
interpolation strategies. It is also general in that any other linearized Riemann solver can
also be reformulated using the ideas developed here so that the resultant scheme guarantees
pressure positivity.

In Section 2 we outline our numerical strategy for ensuring pressure positivity. In Section 3
we give some numerical examples. In Section 4 we arrive at some conclusions.

2. THE NUMERICAL STRATEGY

The method consists of realizing that the entropy equation
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can be coupled with the continuity equation to derive a conservative equation for the entropy
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density which can be written as
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)
= 0. (2)

It is important to realize that the entropy density in Eq. (2) is conserved by each parcel
of fluid as it moves, unless it passes through a magnetosonic shock. Also, realize that the
above equation is an advection equation. Thus, as long as we use monotonicity-preserving
interpolation of the entropy density and as long as the timestep is limited by the Courant
number Eq. (2) will produce a positive entropy density. Since the density is always guar-
anteed to be positive in higher order Godunov schemes, this ensures that Eq. (2) will allow
us to derive a consistent and positive definite value of the pressure whenever it is used.
In regions of the computational domain where magnetosonic shocks are present the usual
MHD equations in conservative form are used. Also in those regions of the computational
domain, where the pressure is large enough, we use the MHD equations in conservative
form. In those portions of the computational domain, where shocks are not present and
where the pressure is a very small fraction of the total energy, one can selectively use the
above equation in conjunction with the MHD equations for mass, momentum, and magnetic
field. Forx-directional variations we have the modified system of conservation laws which
we write out below as
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= 0, (3)

whereP∗ = P + (1/8π)B2 − (1/4π)B2
x . Notice that, because we have written the above

equations as conservation laws, we can still use the higher order Godunov methodology
to help us solve them. The monotone interpolation needed to obtain higher order spatial
accuracy can be done either on the primitive variables or the characteristic variables exactly
as it is done for the original method. The difference arises in the Riemann solver that we need
to use for Eq. (3). We utilize a linearized Riemann solver since iterative Riemann solvers are
impracticable for use in MHD simulation codes. In order to formulate a linearized Riemann
solver for the above system we need the left and right eigenvectors in conserved variables
of Eq. (3). The orthonormal eigenvectors in the primitive variables for MHD have been
derived in Roe and Balsara [4] and here denoted by˜̀ andr̃ . We denote thei th left and right
eigenvectors in the primitive variables by˜̀i andr̃ i . Then thei th left and right eigenvectors
in the conserved variables of Eq. (3) above are denoted by`i andri , respectively. They are
given by

ri = Ar̃ i (4)

`i = ˜̀i B, (5)
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whereA andB are given by

A =



1 0 0 0 0 0 0
vx ρ 0 0 0 0 0
vy 0 ρ 0 0 0 0

vz 0 0 ρ 0 0 0

−(γ − 1)Pρ2−γ 0 0 0 ρ1−γ 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1


(6)

B =



1 0 0 0 0 0 0
−vx/ρ ρ−1 0 0 0 0 0

−vy/ρ 0 ρ−1 0 0 0 0

−vz/ρ 0 0 ρ−1 0 0 0

(γ − 1)Pρ−1 0 0 0 ργ−1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


. (7)

Using these eigenvectors the linearized Riemann solver in the entropy variable, i.e. Eq. (3),
is easy to construct and the entropy fix is enforced in a style similar to the one described
by Harten and Hyman [5] for linearized Riemann solvers of the general type described
by Roe [6]. For MHD a linearized Riemann solver for the equations in conserved form
has been described in Balsara [7] and the present Riemann solver in the entropy variables
complements that effort. A total variation diminishing (TVD) scheme for numerical MHD
which utilizes that the Riemann solver is described in Balsara [8]. It must be mentioned that
the Riemann solver in the entropy variables has been designed so that it can successfully
treat all MHD discontinuities with the sole exception of magnetosonic shocks. Thus in the
ensuing paragraphs we construct a set of switches that allow the underlying structure of the
MHD flow to be automatically assessed. Based on the assessment we utilize the different
linearized Riemann solvers mentioned above. It is also worth mentioning that we used a
linearized Riemann solver for MHD that was based on Roe-type linearization, only because
it is the one we are most familiar with. Any other linearized Riemann solver for Eq. (2),
such as the linearized Riemann solver of Bell, Colella, and Trangenstein [9], can also be
used here. It is also worthwhile to point out that linearized Riemann solvers have been
shown to fail in regions of high cavitation. In that case Einfeldtet al. [10] have shown that
the problem can be cured by using the Einfeldt fix. The same insight carries over to MHD
where the same fix can be used.

Our strategy is oriented towards ensuring safety first. Thus we utilize a linearized Riemann
solver for the MHD equations in the original conserved variables, i.e. with the total energy
equation such as the fifth equation in Eq. (3) at all zone boundaries to construct the fluxes.
We also design a sequence of switches in each zone. The first switch,SW1 is intended to
make sure that the pressure is much smaller than the energy.SW1 is switched on when

Pi, j,k < αEi, j,k, (8)

and it is switched off in all other situations. Hereα is typically set to 0.05. We assume we
are doing a three-dimensional problem on a uniform grid. We use the subscriptsi, j, k to
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denote the zone-centered variable in thei, j, kth zone in a three-dimensional code.α should
be larger than the discretization error of the numerical scheme, and for the TVD scheme
described in Balsara [8], which we have used in all the problems here, this value ofα is an
amply adequate choice.

The second switch is designed to ensure that we are not in the vicinity of a strong
magnetosonic shock or a flow configuration that might develop into such a shock. This is
accomplished by ensuring that the local minima and maxima of pressure are not too far
apart. Thus our second switchSW2 is switched on if

|Pi+1, j,k − Pi−1, j,k| + |Pi, j+1,k − Pi, j−1,k| + |Pi, j,k+1− Pi, j,k−1|
< β̃min(Pi, j,k, Pi+1, j,k, Pi−1, j,k, Pi, j+1,k, Pi, j−1,k, Pi, j,k+1, Pi, j,k−1) (9)

and it is switched off otherwise. Here we have usedβ̃ = 0.1.
The method should not exclude situations where mildly compressive motions may take

place, but it should certainly exclude strongly compressive motions. A measure of this can
be obtained by comparing the undivided divergence of the velocity to the largest local signal
speed. Thus, we have our third switchSW3 which again is switched on if

−δmax(Ci, j,k,Ci+1, j,k,Ci−1, j,k,Ci, j+1,k,Ci, j−1,k,Ci, j,k+1,Ci, j,k−1)<1x(∇ · v)i, j,k
(10)

and is switched off otherwise. Hereδ= 0.03 was used by us. We have the auxiliary de
finitions

1x(∇ · v)i, j,k = (vx i+1, j,k − vx i−1, j,k)+1x

(
vy i, j+1,k − vy i, j−1,k

1y

)
+1x

(
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1z

)
(11)

Ci, j .k=
(
γ Pi, j,k

ρi, j,k
+ B2

i, j,k

4πρi, j,k

)1/2

. (12)

With these switches defined, two alternative strategies become possible. The Riemann solver
in conservative variables is always utilized at all zone boundaries. In both strategies for those
zone boundaries that abut zones that are flagged bySW1we also utilize the Riemann solver
for the system given in Eq. (3). The differences in the strategies arise from how we use the
switches. For the rest of this paper when we refer to the Riemann solver in conservation
variables we will refer to it simply as the Riemann solver. Also for the rest of this paper
when we refer to the entropy-based Riemann solver we will be referring to the Riemann
solver that pertains to the system given in Eq. (3).

2.1. Strategy 1

In this strategy we only try to correct situations where the pressure might potentially
become negative. Thus, we only work with switchSW1. In all those zones that are flagged
by SW1 we update the energy equation using the normal Riemann solver. We also update
the entropy density Eq. (2) using the fluxes from the pressure-positive Riemann solver
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formulated for the system of equations given in Eq. (3). Should the energy equation produce
a negative pressure, we derive the updated pressure from Eq. (2) and use that to form a new
total energy which corresponds to a positive pressure. Because the energy equation is used
most of the time this will result in a pressure update that is not better in its accuracy than
the overall accuracy of the numerical scheme. This is so because for most timesteps and in
most zones our pressure is still derived from the subtraction of two large numbers.

2.2. Strategy 2

Here we try to update the pressure with an accuracy that is better than the discretization
accuracy of the numerical scheme. To explain this in a little more detail, in a higher order
Godunov scheme the discretization errors made in the temporal update of the total energy
are a small fraction of the total energy itself. The discretization errors made in updating
the entropy density are a small fraction of the entropy density. But because the plasmaβ

is so small the entropy density has a much smaller numerical value than the energy. Thus
in absolute terms the errors made in evaluating the pressure when it is evaluated using
the entropy density are much smaller than those obtained by using the total energy. But
it is only possible to use the entropy density equation when the local flow does not have
any magnetosonic shocks in it. The entropy density equation is still valid in regions with
entropy wave discontinuities or Alfv´enic discontinuities. SwitchesSW2 andSW3, when
they are turned on, indicate that the local flow may have Alfv´enic or magnetosonic waves
in it, but it does not have magnetosonic shocks. This is so because only magnetosonic
waves in MHD are compressive in nature andSW2andSW3are designed to identify such
situations. Thus, we necessarily need to use the full compendium of switches designed
above in order to safely bypass the energy update in certain zones. In this strategy for all the
zones that have been flagged bySW1 andSW2 andSW3, we update the entropy density
using Eq. (2). From the entropy density we construct the pressure in the zone. The updated
total energy in that zone is then obtained by using the momentum equation to construct the
zone’s kinetic energy density and the induction equation to construct the magnetic energy
density and adding these two energies to the zone’s thermal energy density, obtained from
using Eq. (2) along with the fluid continuity equation. Thus, in such zones the energy fluxes
are not used to update the total energy equation. As in Strategy 1, should any zone that is
flagged bySW1 produce a negative pressure we use Eq. (2) to provide a positive pressure
to that zone instead. This allows us to update the pressure with the discretization accuracies
of Eq. (2) and the continuity equation which is better that the discretization accuracy with
which the total energy is updated. This is so because the large number constituted by the
plasma’s kinetic and magnetic energy densities are eliminated in Eq. (2). Thus the pressure
is updated with the discretization accuracy of the thermodynamic variables, i.e. the density
and entropy density, which is much smaller than that of the total energy variable. It will be
shown in the next section that Strategy 2 is the method of choice.

An interesting point must be noted here. In utilizing Eq. (2) we would give up conservation
of energy. However,SW1 identifies those situations where the discretization error in the
pressure update is much smaller than the discretization error in the total energy. Since we
only utilize Eq. (2) in those local regions of the flow, whereSW1 has been switched on,
we locally violate the conservation of total energy. But, because ofSW1 we only violate
it in local regions by an amount that is smaller than the discretization accuracy of the total
energy equation itself. Besides, because ofSW2 andSW3 we only violate it in regions of
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the flow that are free of magnetosonic shocks. In such regions the importance of energy
conservation is minimal. In return, we do get a numerically consistent and positive pressure
which maintains greater consistency with the physics in the problem.

3. NUMERICAL RESULTS

3.1. Propagation of a Torsional Alfv́en Wave Pulse

As an example we consider the propagation of a torsional Alfv´en wave pulse at high
speed with respect to the computing grid. The problem is one-dimensional and is set up
with 800 zones in the interval [−0.5, 0.5]. A fluid with unit density and a pressure of 10−2

is set up. A uniformx-velocity of 10 is given to the fluid in thex-direction which is also
the direction in which the problem is solved. The magnetic field in thex-direction is given
a value of 10. The transverse velocities and magnetic fields are denoted by a subscriptT
and are given below by the formulae

φ = π

8
[tanh((x + 0.25)/δ)+ 1][tanh((0.25− x)/δ)+ 1] (13)

VT = 10(cos(φ)ŷ+ sin(φ)ẑ) (14)

BT = −10
√

4π(cos(φ)ŷ+ sin(φ)ẑ). (15)

The pulse is initially set up in the center of the computing grid. Periodic boundaries are
assumed. The pulse is allowed to go around the computational domain twice and the sim-
ulation is stopped at a time of 0.156. In all the simulations shown below a Courant number
of 0.8 was used. This test problem was chosen because the pressure is very small compared
to the total energy. In this problem it is less than a ten-thousandth of the total energy in the
flow. The pressure is also very small, compared to either the magnetic or kinetic energies.
The existence of a strong torsional Alfv´en wave discontinuity makes the problem nontrivial.
After two passages around the computational domain successful numerical treatment would
be indicated by the fact that the pulse’s shape is properly preserved. Because the pressure
is so small most numerical schemes would produce a negative pressure in some of the
zones.

In Figs. 1a–g we show the density, pressure,x, y, andz-velocities andy andz-magnetic
fields for this problem at the final computational time. The problem was done using Strat-
egy 1. We setδ= 0.005. Figures 2a–g show similar results obtained by using Strategy 1 with
δ= 0.00125. Figures 3a–g show the results obtained using Strategy 2 withδ= 0.00125.

We see from Fig. 1b that the pressure has remained positive throughout the course of
the simulation. Thus, if the purpose is simply to produce a simulation strategy that never
produces negative pressures then we may conclude that Strategy 1 has indeed worked. But
we also see from Fig. 1b that the pressure has grown substantially in the course of the
simulation. In fact, the pressure has grown to the point where it is approximately of order
unity. It must be pointed out that this is about 10−2 times the total energy in the flow. This
is not surprising because schemes of this sort can maintain accuracies of about one part in
a hundred at strong discontinuities like the ones we have in our Alfv´en pulse. It is just the
smallness of the initial pressure distribution that makes this error stand out in our example.
This was, in fact, the point of constructing this example. We should note though that this
accuracy does not scale as the resolution is improved, because it is determined by the
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FIG. 1. Test problem for a torsional Alfv´en wave pulse as described by Eqs. (13)–(15). Hereδ = 0.005 at a
time of 0.156. Strategy 1 was used.

numerical scheme’s ability to handle discontinuities. At discontinuities the interpolation,
being monotonicity preserving, produces mostly flat profiles. Thus the accuracy with which
such discontinuities can be handled is determined by the Riemann solver. Approximate
Riemann solvers always use an average state that is not necessarily representative of the
exact discontinuity they have to model. This further degrades the process of capturing
discontinuities. The fact that the pressure has increased at the expense of the kinetic and
magnetic energies implies that the Riemann solver, whose purpose is to produce stability by
selectively introducing dissipation, is doing what it is expected to do. The only problem here
is that in doing so it has substantially degraded the quality of the solution; i.e., the Riemann
solver has not been selective enough! That point becomes even clearer when viewing the
transverse velocities in Figs. 1d and 1e and the transverse magnetic fields in Figs. 1f and 1g.
It becomes very clear that the Riemann solver has tried to introduce tiny shocklets into the
flow and, given enough time, they have propagated through the computational domain and
raised the fluid’s entropy and thereby its pressure. The degradation in the fluid’s transverse
velocity profile is in fact seen to be substantial. Figure 1c for the fluid’sx-velocity also
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FIG. 1—Continued

shows that there have been about 1–2% changes in thex-velocity and that is comparable
in magnitude to the amount by which the pressure has changed. In fact, one can make an
order of magnitude estimate of the kinetic energy to show that a 2% change in a velocity
of 10 can cause a change in the pressure that is large enough in our example to bring the
pressure’s mean magnitude up to unity.

Figure 2 shows that on making the profile narrower the trends noted in the previous
paragraph have increased. This is in fact as expected. Owing to the sharpness of the dis-
continuity the Riemann solver introduces more dissipation faster. Figures 1 and 2 col-
lectively show that the overall goal of producing a simulation which always produces
positive pressures can be met. But the price one pays is that the pressure is increased to
the point where it is comparable in magnitude to the discretization error of the numer-
ical scheme at strong discontinuities. This is consistent with the explanations given for
Strategy 1 in the previous section. An insight that one derives from the above discussion
is that Strategy 1 does effectively invoke the entropy-based Riemann solver in order to
save the simulation from generating negative pressures. But it invokes the entropy-based
Riemann solver too late. Small errors that have accumulated over several timesteps have



142 BALSARA AND SPICER

FIG. 2. Test problem for a torsional Alfv´en wave pulse as described by Eqs. (13)–(15). Hereδ = 0.00125 at
a time of 0.156. Strategy 1 was used.

already produced large changes in the very small initial pressure field in this problem and
by the time the entropy-based Riemann solver is invoked in Strategy 1 the quality of the
solution has already been spoiled. Thus, we want to explore how Strategy 2 can rectify
that.

Figure 3 shows the solution to the same problem as in Fig. 2. This time the problem was run
using Strategy 2. The initial discontinuity in the Alfv´en pulse is very sharp and of the order
of magnitude of a few zones. Now we see that the pressure has been retained at about the
same magnitude as the one we started with. As an added advantage the transverse velocities
show sharp, unspoiled profiles. The same is true for the transverse magnetic fields. This
shows that the combination of switches that we have used in Strategy 2 have done the job
of stepping in and preventing the flow from being degraded. The new entropy-based Riemann
solver developed here is invoked as desired and prevents large errors from building up in
the pressure variable.

It is also possible to set a floor value for the pressure. In that case one would poll each
zone at each timestep to make sure that the floor value was not crossed. Should it be crossed
in a particular zone one might arbitrarily raise the pressure in that zone. We have also tried
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FIG. 2—Continued

such a strategy. With judicious choices of the pressure floor value we have been able to
obtain solutions that are comparable in quality to those obtained from Strategy 1 but not
Strategy 2. There are two fundamental problems with doing that. First, for each problems
one has to go through a trial and error process in order to find a good value for the pressure
floor. Second, in certain problems with a complex enough flow it may not be possible to
find a single floor value that is uniformly applicable to the entire computational domain.
We have also carried out simulations involving strong shocks moving through low pressure
fluid and found that the strategy designed here successfully switches itself off in the vicinity
of shocks.

3.2. Interaction of Alfv́en Waves with a Magnetosonic Shock

In Section 2 we pointed out that the switches were designed to be universal and robust.
A key concern for the alert reader may well be that in localized regions of the plasma
with low values ofβ, when the switches indicate that the flow does not have a magne-
tosonic shock in the vicinity of a computational zone, we advocate the utilization of Eq. (3)
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FIG. 3. Test problem for a torsional Alfv´en wave pulse as described by Eqs. (13)–(15). Hereδ = 0.00125 at
a time of 0.156.

for the time-update. Thus in order to demonstrate the universality and robustness of the
switches we show that when a strong shock interacts with a region of the flow that has a
low β the result of the simulation is indistinguishable from the result from a correspond-
ing simulation that utilizes a conservation form for the energy equation. The test problem
we present was motivated by a hydrodynamical test problem that was presented in Shu
and Osher [11]. One possible MHD analogue of that test problem consists of the inter-
action of a right-going Mach 5 shock with a left-going Alfv´en wave that is propagating
towards the shock. The Alfv´en wave propagates through the preshocked gas which is taken
to be a lowβ plasma. Thus in the vicinity of the shock, if the switches are to operate
effectively, they should switch back to a form that conserves total energy. The example
that we describe in detail in the next paragraph shows that the switches do indeed operate
effectively.

The problem is one-dimensional and is set up with 800 zones along thex-axis spanning
the interval [−0.5, 0.5]. The preshocked fluid is at rest and has unit density and a pressure
of 10−2. The preshocked fluid initially occupies the region [−0.1, 0.5]. The postshocked
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FIG. 3—Continued

fluid occupies the remaining region and has a density of 5 units, a pressure of 0.28999, and
anx-velocity of 0.473286. The magnetic field in thex-direction has a strength of 10 units.
The transverse velocities and magnetic fields in the shocked fluid are set to zero. A left-
propagating Alfvén wave is initialized in the unshocked fluid with transverse velocities and
magnetic field given by

φ = 2πx/δ (16)

VT = −0.2(cos(φ)ŷ+ sin(φ)ẑ) (17)

BT = −0.2
√

4π(cos(φ)ŷ+ sin(φ)ẑ). (18)

As the simulation evolved, the ghost zones on the right boundary were given values for the
transverse velocity and magnetic field that were consistent with those that are needed to
sustain a left-going Alfv´en wave. We setδ = 1.5. A Courant number of 0.8 was used. The
problem was stopped at a time of 0.2.

In Figs. 4a–g we show the density, pressure,x, y, andz-velocities, andy andz-magnetic
fields for this problem at the final computational time. The problem was simulated using
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FIG. 4. Test problem for the interaction of Alfv´en waves with a magnetosonic shock as described by
Eqs. (16)–(18) at a time of 0.2.

Strategy 2. We see from Fig. 4 that the Alfv´en wave has propagated into the shock, thereby
perturbing it. Because the Alfv´en wave has a nontrivial strength the perturbations to the mag-
netosonic shock are substantial. The shock front responds to this perturbation by launching
right-going and left-going magnetosonic waves. The density and pressure variables show
that by the final time in the simulation the waves have reached the right boundary. The plots
for the transverse velocities and magnetic fields show that a portion of the Alfv´en wave
propagates to the left of the shock. In the unshocked fluid the transverse velocities and
magnetic field fluctuations in the right-going magnetosonic waves interact with the corre-
sponding variables in the left-going Alfv´en wave. This results in a complex superposition of
sinusoids for the transverse velocities and magnetic field in the unshocked gas. The problem
was run again without any of the pressure positivity switches. The results were seen to be
identical with those in Fig. 4. This demonstrates that the switches do operate effectively
and robustly and do not damage the flow by invoking the use of Eq. (3) in regions of the
flow where its use is not justified.
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FIG. 4—Continued

4. CONCLUSIONS

In this paper we have constructed strategies for ensuring the positivity of the pres-
sure variable. They are applicable when performing MHD simulations using higher order
Godunov schemes. They become especially relevant when the pressure is a very small frac-
tion of the kinetic energy or the magnetic energy. We have constructed two strategies to
ensure the positivity of pressure. Strategy 1 does this but is not selective enough to allow
us to evolve the pressure variable with small discretization errors, i.e. discretization errors
that are much smaller than the overall discretization error of the numerical scheme itself.
By constructing numerical examples we show that this is a consequence of Strategy 1 not
being selective enough in how it invokes the entropy-based Riemann solver. Strategy 2, by
contrast, is shown to be discriminating enough. It allows us to evolve the pressure with an
accuracy that scales as the pressure variable itself and is far smaller than the accuracy with
which the rest of the equations are evolved. We make this point with an example. Strategy 2
is thus shown to be the method of choice.

It also helps to build one’s perspective by comparing the method of Linde and Roe [2] for
maintaining pressure positivity and the method developed in Ryuet al.[1] and ourselves in
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this paper. In the former method one locally reduces the order of accuracy to get pressure
positivity. In doing so the Riemann solver’s ability to produce local dissipation is in fact
utilized. There is a strong tie that the method of Linde and Roe [2], therefore, has to the form
of the monotonicity-preserving interpolation that is used. The arithmetic associated with this
method also becomes increasingly intractable if interpolation that is better than piecewise
linear is used. By contrast the latter method seeks to locally improve on the accuracy, even
to the point of trying to update the entropy density with an accuracy that is better than that
of the rest of the equations. The normal Riemann solver in the conserved variables is then
viewed as being too undiscriminating in how it introduces dissipation. Thus, an attempt is
made to selectively switch to another entropy-based Riemann solver that is less dissipative.
In doing so we have to introduce a reliance on switches that automatically identify the local
regions in the flow where it is acceptable to make this switch. No constraints are put on the
form of the interpolation that is to be used. In fact as the interpolation accuracy is improved,
say by the introduction of a very high order essentially nonoscillatory interpolation scheme,
the dependence on the strategies developed here for maintaining pressure positivity can be
selectively reduced.
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