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Higher order Godunov schemes for solving the equations of magnetohydrody-
namics (MHD) have recently become available. Because such schemes update the
total energy, the pressure is a derived variable. In several problems in laboratory
physics, magnetospheric physics, and astrophysics the pressure can be several orders
of magnitude smaller than either the kinetic energy or the magnetic energy. Thus
small discretization errors in the total energy can produce situations where the gas
pressure can become negative. In this paper we design a linearized Riemann solver
that works directly on the entropy density equation. We also design switches that
allow us to use such a Riemann solver safely in conjunction with a normal Riemann
solver for MHD. This allows us to reduce the discretization errors in the evaluation of
the pressure variable. As a result we formulate strategies that maintain the positivity
of pressure in all circumstances. We also show via test problems that the strategies
designed here work.© 1999 Academic Press

1. INTRODUCTION

When the equations of magnetohydrodynamics (MHD) are written in conservative f
the pressureP, is a variable whose value has to be derived at each timestep. In o
to derive the value of the pressure one has to subtract off the kinetic epefg® and
magnetic energy?/8r from the total energyE = pv?/2 + P/(y — 1) + B?/8m, where
y is the ratio of specific heats. Often these can be quite large relative to the value c
pressure. For examplg,= 8z P/B? < 10~ are quite common in both stellar atmosphere
such as the Sun’s and in the Earth’'s magnetosphere. Thus discretization errors m:
computing the total energy and the kinetic energy and magnetic energies can be
enough to result in negative pressure. This results in an unacceptable physical situat
the computation of MHD flows. In all the computational situations where the pathol
occurs one notices that the local fluid flow in regions wheiesmall, is typically adiabatic,
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and there are no magnetosonic shocks. In the vicinity of shocks, as long as the magneto-
has a positive pressure in the region in front of the magnetosonic shock, the fluid behinc
magnetosonic shock will have positive pressure, owing to the fact that magnetosonic sh
are compressive. The only other MHD discontinuities where the fluid actually passes thro
the discontinuity are Alfeh waves. When a parcel of fluid passes through a torsionagAlfv’
wave discontinuity its entropy is preserved. Entropy waves in MHD, just like the entro
waves in the Euler equations, do not allow the fluid to pass through the discontinuity. T
negative pressure is, therefore, simply produced (in regions without magnetosonic sho
because we subtract two large numbers, that is, the kinetic energy and the magnetic en
from a third large number, the total energy. As long as the zones in front of a magnetost
shock have positive pressure, negative pressures would not be produced in magneto
shocks.

A similar problem arises in the modelling of high speed fluid flows with the Eule
equations. In that case two solution strategies become possible. The first, suggeste
Ryu et al. [1], consists of using a modified entropy equation written in conservation for
instead of using the total energy equation to complete the hyperbolic system. We d
on that strategy here in formulating a method for preserving pressure positivity in MF
flows. The second strategy, suggested by Linde and Roe [2] relies on two facts: (a)
fluxes of the Euler system are first-order functions of the conserved variables and (|
Riemann solver exists which always produces a positive pressure at the zone boundary
the Euler equations the Riemann solver of choice, as suggested by Linde and Roe [
the exact Riemann solver for the Euler equations. Such an exact Riemann solver for
Euler equations has been formulated by vanLeer [3]. It is important to note that, ever
the method of Linde and Roe [2], the use of the exact Riemann solver alone cannot fix
problem completely. The reason is that discretization errors in the monotonicity-preserv
reconstruction, as well as in the flux differencing can reduce the accuracy with whi
the total energy is evolved and thereby cause the pressure to become negative in ce
situations in a lows flow. For MHD the fluxes are not a first-order function of the conserve
variables. Also an exact Riemann solver for MHD is difficult to formulate and takes up f
too much computational time to be usable in any real numerical scheme. For this reasol
draw on the first strategy in this paper, rather than the second. The method developed h
general in that it would apply to other schemes that use different monotonicity-preserv
interpolation strategies. It is also general in that any other linearized Riemann solver
also be reformulated using the ideas developed here so that the resultant scheme guar:
pressure positivity.

In Section 2 we outline our numerical strategy for ensuring pressure positivity. In Sectio
we give some numerical examples. In Section 4 we arrive at some conclusions.

2. THE NUMERICAL STRATEGY

The method consists of realizing that the entropy equation

£()ee(2)

can be coupled with the continuity equation to derive a conservative equation for the entr
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density which can be written as

3 P P
() ()

It is important to realize that the entropy density in Eq. (2) is conserved by each pa
of fluid as it moves, unless it passes through a magnetosonic shock. Also, realize the
above equation is an advection equation. Thus, as long as we use monotonicity-prese
interpolation of the entropy density and as long as the timestep is limited by the Cou
number Eg. (2) will produce a positive entropy density. Since the density is always g
anteed to be positive in higher order Godunov schemes, this ensures that Eq. (2) will e
us to derive a consistent and positive definite value of the pressure whenever it is
In regions of the computational domain where magnetosonic shocks are present the
MHD equations in conservative form are used. Also in those regions of the computati
domain, where the pressure is large enough, we use the MHD equations in consen
form. In those portions of the computational domain, where shocks are not present
where the pressure is a very small fraction of the total energy, one can selectively us
above equation in conjunction with the MHD equations for mass, momentum, and magt
field. Forx-directional variations we have the modified system of conservation laws wh
we write out below as

v
P PUx
ov pvg + P*
) oV 5 puxvy — ByBy/4m
_ pv + — | pvxvz,— ByB;/4n | =0, 3)
ot 1-y X
Ppo v Ppl”
By Vx By — Uy BX
B, vy B; — v7Bx

whereP* = P + (1/87)B? — (1/47)B2. Notice that, because we have written the abo
equations as conservation laws, we can still use the higher order Godunov methodc
to help us solve them. The monotone interpolation needed to obtain higher order s
accuracy can be done either on the primitive variables or the characteristic variables ex
asitis done for the original method. The difference arises in the Riemann solver that we
to use for Eq. (3). We utilize a linearized Riemann solver since iterative Riemann solver:
impracticable for use in MHD simulation codes. In order to formulate a linearized Riem:
solver for the above system we need the left and right eigenvectors in conserved vari
of Eg. (3). The orthonormal eigenvectors in the primitive variables for MHD have be
derived in Roe and Balsara [4] and here denoted &ydf. We denote théth left and right
eigenvectors in the primitive variables Byandf;. Then theith left and right eigenvectors
in the conserved variables of Eq. (3) above are denotet apdr;, respectively. They are
given by

ri = Af; (4)
b = Ei B, %)
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whereA andB are given by

1 000 O 00O
Uy p 00 O 00O
vy 0O p O O OO
A = vz 0 0p O OO (6)
—(y—=DPp>7 0 0 0 p¥v 0 O
0 0 00O O 10
0 0 00 O 01
1 0 0 0 0O O O\
—ux/p p~l 0 0 0O 0O
—vy/p 0 p1 0 0O 0O
B = —v,/p 0 0 p* 0o 00O (1)
(y —1Ppt 0 0 0 pr1 00
0 0 0 0 0O 10
0 o 0 0o 0 01

Using these eigenvectors the linearized Riemann solver in the entropy variable, i.e. Eq.
is easy to construct and the entropy fix is enforced in a style similar to the one descri
by Harten and Hyman [5] for linearized Riemann solvers of the general type descrit
by Roe [6]. For MHD a linearized Riemann solver for the equations in conserved fol
has been described in Balsara [7] and the present Riemann solver in the entropy vari
complements that effort. A total variation diminishing (TVD) scheme for numerical MHI
which utilizes that the Riemann solver is described in Balsara [8]. It must be mentioned t
the Riemann solver in the entropy variables has been designed so that it can succes:
treat all MHD discontinuities with the sole exception of magnetosonic shocks. Thus in
ensuing paragraphs we construct a set of switches that allow the underlying structure o
MHD flow to be automatically assessed. Based on the assessment we utilize the diffe
linearized Riemann solvers mentioned above. It is also worth mentioning that we use
linearized Riemann solver for MHD that was based on Roe-type linearization, only beca
it is the one we are most familiar with. Any other linearized Riemann solver for Eq. (2
such as the linearized Riemann solver of Bell, Colella, and Trangenstein [9], can alsc
used here. It is also worthwhile to point out that linearized Riemann solvers have b
shown to fail in regions of high cavitation. In that case Einfeidal. [10] have shown that
the problem can be cured by using the Einfeldt fix. The same insight carries over to Mt
where the same fix can be used.

Our strategy is oriented towards ensuring safety first. Thus we utilize a linearized Riem:
solver for the MHD equations in the original conserved variables, i.e. with the total enel
equation such as the fifth equation in Eq. (3) at all zone boundaries to construct the flu
We also design a sequence of switches in each zone. The first s&W¢his intended to
make sure that the pressure is much smaller than the ei8Ayis switched on when

P.ik <aEijk 8)

and it is switched off in all other situations. Herés typically set to 0.05. We assume we
are doing a three-dimensional problem on a uniform grid. We use the subscijipksto
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denote the zone-centered variable inithg k™ zone in a three-dimensional codeshould
be larger than the discretization error of the numerical scheme, and for the TVD sch
described in Balsara [8], which we have used in all the problems here, this valuie ah
amply adequate choice.

The second switch is designed to ensure that we are not in the vicinity of a str
magnetosonic shock or a flow configuration that might develop into such a shock. Th
accomplished by ensuring that the local minima and maxima of pressure are not to
apart. Thus our second swit&8W2 is switched on if

IPit1jk — P—sjkl 1B j+1k = Bj—ikl + 1P ke — B j k-1l

< BmMin(R j i, Bivjk: B-vjk Pj+ike Pj—1k Pjkets Bjk-1) 9

and it is switched off otherwise. Here we have uged 0.1.

The method should not exclude situations where mildly compressive motions may
place, but it should certainly exclude strongly compressive motions. A measure of this
be obtained by comparing the undivided divergence of the velocity to the largest local si
speed. Thus, we have our third switsklv3 which again is switched on if

=3 max(Ci j k. Cit1jk Ci—1jk Cij+1k Cij—1k Ci,jk+1 Ci,jk=1) < AX(V - V)i j k
(10)

and is switched off otherwise. Hefe=0.03 was used by us. We have the auxiliary d
finitions

Vvyi.i — Uyij.j—
AX(V - V)i jk = (Uxit1,j,k — Uxi-1,j.k) +AX( yhitbk = YL 1’k>

Ay
Vzi,j ksl — Vzi j k=1
AX 11
" ( - ) (11)
172
P B2.
Piik ATk

With these switches defined, two alternative strategies become possible. The Riemann:
in conservative variables is always utilized at all zone boundaries. In both strategies for t
zone boundaries that abut zones that are flagg&W¥ywe also utilize the Riemann solver
for the system given in Eq. (3). The differences in the strategies arise from how we us
switches. For the rest of this paper when we refer to the Riemann solver in conserv:
variables we will refer to it simply as the Riemann solver. Also for the rest of this paj
when we refer to the entropy-based Riemann solver we will be referring to the Riem
solver that pertains to the system given in Eqg. (3).

2.1. Strategy 1

In this strategy we only try to correct situations where the pressure might potenti
become negative. Thus, we only work with swiW1. In all those zones that are flaggec
by SW1we update the energy equation using the normal Riemann solver. We also up
the entropy density Eq. (2) using the fluxes from the pressure-positive Riemann sc
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formulated for the system of equations given in Eq. (3). Should the energy equation prod
a negative pressure, we derive the updated pressure from Eq. (2) and use that to form ¢
total energy which corresponds to a positive pressure. Because the energy equation is
most of the time this will result in a pressure update that is not better in its accuracy tt
the overall accuracy of the numerical scheme. This is so because for most timesteps a
most zones our pressure is still derived from the subtraction of two large numbers.

2.2. Strategy 2

Here we try to update the pressure with an accuracy that is better than the discretize
accuracy of the numerical scheme. To explain this in a little more detalil, in a higher or
Godunov scheme the discretization errors made in the temporal update of the total en
are a small fraction of the total energy itself. The discretization errors made in updat
the entropy density are a small fraction of the entropy density. But because the glasn
is so small the entropy density has a much smaller numerical value than the energy.
in absolute terms the errors made in evaluating the pressure when it is evaluated u
the entropy density are much smaller than those obtained by using the total energy.
it is only possible to use the entropy density equation when the local flow does not h
any magnetosonic shocks in it. The entropy density equation is still valid in regions w
entropy wave discontinuities or Alériic discontinuities. SwitcheéSW2 and SW3, when
they are turned on, indicate that the local flow may have &idfe’or magnetosonic waves
in it, but it does not have magnetosonic shocks. This is so because only magnetos
waves in MHD are compressive in nature &8\W2 andSWa3 are designed to identify such
situations. Thus, we necessarily need to use the full compendium of switches desic
above in order to safely bypass the energy update in certain zones. In this strategy for a
zones that have been flagged ®W1 and SW2 and SW3, we update the entropy density
using Eg. (2). From the entropy density we construct the pressure in the zone. The upd
total energy in that zone is then obtained by using the momentum equation to construc
zone’s kinetic energy density and the induction equation to construct the magnetic en
density and adding these two energies to the zone’s thermal energy density, obtained
using Eq. (2) along with the fluid continuity equation. Thus, in such zones the energy flu:
are not used to update the total energy equation. As in Strategy 1, should any zone tf
flagged bySW1 produce a negative pressure we use Eq. (2) to provide a positive press
to that zone instead. This allows us to update the pressure with the discretization accur:
of Eq. (2) and the continuity equation which is better that the discretization accuracy w
which the total energy is updated. This is so because the large number constituted by
plasma’s kinetic and magnetic energy densities are eliminated in Eq. (2). Thus the pres
is updated with the discretization accuracy of the thermodynamic variables, i.e. the den
and entropy density, which is much smaller than that of the total energy variable. It will
shown in the next section that Strategy 2 is the method of choice.

Aninteresting point must be noted here. In utilizing Eq. (2) we would give up conservati
of energy. HoweverSW1 identifies those situations where the discretization error in th
pressure update is much smaller than the discretization error in the total energy. Sinc
only utilize Eq. (2) in those local regions of the flow, wh&8®&/1 has been switched on,
we locally violate the conservation of total energy. But, becausgVéi we only violate
it in local regions by an amount that is smaller than the discretization accuracy of the t
energy equation itself. Besides, becaus&Wf2 andSW3we only violate it in regions of
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the flow that are free of magnetosonic shocks. In such regions the importance of er
conservation is minimal. In return, we do get a numerically consistent and positive pres
which maintains greater consistency with the physics in the problem.

3. NUMERICAL RESULTS

3.1. Propagation of a Torsional Alen Wave Pulse

As an example we consider the propagation of a torsionalelfwave pulse at high
speed with respect to the computing grid. The problem is one-dimensional and is se
with 800 zones in the intervaH0.5, 0.5]. A fluid with unit density and a pressure of 20
is set up. A uniformx-velocity of 10 is given to the fluid in thg-direction which is also
the direction in which the problem is solved. The magnetic field inxtaiérection is given
a value of 10. The transverse velocities and magnetic fields are denoted by a subsci
and are given below by the formulae

¢ = %[tanh((x +0.25)/8) + 1][tanh((0.25 — X)/8) + 1] (13)
V1 = 10(cos¢)¥ + sin(¢)2) (14)
Br = —10V/47 (COS) Y + Sin(¢)2). (15)

The pulse is initially set up in the center of the computing grid. Periodic boundaries
assumed. The pulse is allowed to go around the computational domain twice and the
ulation is stopped at a time of 0.156. In all the simulations shown below a Courant nun
of 0.8 was used. This test problem was chosen because the pressure is very small con
to the total energy. In this problem it is less than a ten-thousandth of the total energy ir
flow. The pressure is also very small, compared to either the magnetic or kinetic ener
The existence of a strong torsional Adfivwave discontinuity makes the problem nontrivial
After two passages around the computational domain successful numerical treatment v
be indicated by the fact that the pulse’s shape is properly preserved. Because the pre
is so small most numerical schemes would produce a negative pressure in some c
zones.

In Figs. 1a—g we show the density, pressurey, andz-velocities andy andz-magnetic
fields for this problem at the final computational time. The problem was done using St
egy 1. We set = 0.005. Figures 2a—g show similar results obtained by using Strategy 1 w
8 =0.00125. Figures 3a—g show the results obtained using Strategy 3 with00125.

We see from Fig. 1b that the pressure has remained positive throughout the cour
the simulation. Thus, if the purpose is simply to produce a simulation strategy that n
produces negative pressures then we may conclude that Strategy 1 has indeed worke
we also see from Fig. 1b that the pressure has grown substantially in the course ¢
simulation. In fact, the pressure has grown to the point where it is approximately of ol
unity. It must be pointed out that this is about 2@imes the total energy in the flow. This
is not surprising because schemes of this sort can maintain accuracies of about one |
a hundred at strong discontinuities like the ones we have in oueAlpulse. It is just the
smallness of the initial pressure distribution that makes this error stand out in our exan
This was, in fact, the point of constructing this example. We should note though that
accuracy does not scale as the resolution is improved, because it is determined b
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FIG. 1. Test problem for a torsional Al&ri wave pulse as described by Egs. (13)—(15). Het0.005 at a
time of 0.156. Strategy 1 was used.

numerical scheme’s ability to handle discontinuities. At discontinuities the interpolatic
being monotonicity preserving, produces mostly flat profiles. Thus the accuracy with wh
such discontinuities can be handled is determined by the Riemann solver. Approxin
Riemann solvers always use an average state that is not necessarily representative |
exact discontinuity they have to model. This further degrades the process of captu
discontinuities. The fact that the pressure has increased at the expense of the kinetic
magnetic energies implies that the Riemann solver, whose purpose is to produce stabili
selectively introducing dissipation, is doing what it is expected to do. The only problem h
is that in doing so it has substantially degraded the quality of the solution; i.e., the Riem:
solver has not been selective enough! That point becomes even clearer when viewin
transverse velocities in Figs. 1d and 1e and the transverse magnetic fields in Figs. 1f an
It becomes very clear that the Riemann solver has tried to introduce tiny shocklets into
flow and, given enough time, they have propagated through the computational domain
raised the fluid’s entropy and thereby its pressure. The degradation in the fluid’s transv
velocity profile is in fact seen to be substantial. Figure 1c for the fluiekelocity also
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FIG. 1—Continued

shows that there have been about 1-2% changes ix-tledocity and that is comparable
in magnitude to the amount by which the pressure has changed. In fact, one can ma
order of magnitude estimate of the kinetic energy to show that a 2% change in a velc
of 10 can cause a change in the pressure that is large enough in our example to brir
pressure’s mean magnitude up to unity.

Figure 2 shows that on making the profile narrower the trends noted in the prev
paragraph have increased. This is in fact as expected. Owing to the sharpness of th
continuity the Riemann solver introduces more dissipation faster. Figures 1 and 2
lectively show that the overall goal of producing a simulation which always produc
positive pressures can be met. But the price one pays is that the pressure is increa
the point where it is comparable in magnitude to the discretization error of the nun
ical scheme at strong discontinuities. This is consistent with the explanations given
Strategy 1 in the previous section. An insight that one derives from the above discus
is that Strategy 1 does effectively invoke the entropy-based Riemann solver in orde
save the simulation from generating negative pressures. But it invokes the entropy-t
Riemann solver too late. Small errors that have accumulated over several timesteps
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FIG. 2. Test problem for a torsional Aliri wave pulse as described by Egs. (13)—(15). Heted.00125 at
a time of 0.156. Strategy 1 was used.

already produced large changes in the very small initial pressure field in this problem
by the time the entropy-based Riemann solver is invoked in Strategy 1 the quality of
solution has already been spoiled. Thus, we want to explore how Strategy 2 can re
that.

Figure 3 shows the solution to the same problem asin Fig. 2. Thistime the problemwas
using Strategy 2. The initial discontinuity in the A#fa’pulse is very sharp and of the order
of magnitude of a few zones. Now we see that the pressure has been retained at abo
same magnitude as the one we started with. As an added advantage the transverse vels
show sharp, unspoiled profiles. The same is true for the transverse magnetic fields.
shows that the combination of switches that we have used in Strategy 2 have done the
of stepping in and preventing the flow from being degraded. The new entropy-based Riern
solver developed here is invoked as desired and prevents large errors from building u
the pressure variable.

It is also possible to set a floor value for the pressure. In that case one would poll e
zone at each timestep to make sure that the floor value was not crossed. Should it be cr
in a particular zone one might arbitrarily raise the pressure in that zone. We have also t
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FIG. 2—Continued

such a strategy. With judicious choices of the pressure floor value we have been ak
obtain solutions that are comparable in quality to those obtained from Strategy 1 but
Strategy 2. There are two fundamental problems with doing that. First, for each probl
one has to go through a trial and error process in order to find a good value for the pre:
floor. Second, in certain problems with a complex enough flow it may not be possibl
find a single floor value that is uniformly applicable to the entire computational dome
We have also carried out simulations involving strong shocks moving through low pres:
fluid and found that the strategy designed here successfully switches itself off in the vici
of shocks.

3.2. Interaction of Alfien Waves with a Magnetosonic Shock

In Section 2 we pointed out that the switches were designed to be universal and ro
A key concern for the alert reader may well be that in localized regions of the plas
with low values of 8, when the switches indicate that the flow does not have a mag
tosonic shock in the vicinity of a computational zone, we advocate the utilization of Eq.
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FIG. 3. Test problem for a torsional Al wave pulse as described by Egs. (13)-(15). ldet€0.00125 at
a time of 0.156.

for the time-update. Thus in order to demonstrate the universality and robustness of
switches we show that when a strong shock interacts with a region of the flow that he
low B the result of the simulation is indistinguishable from the result from a correspon
ing simulation that utilizes a conservation form for the energy equation. The test probl
we present was motivated by a hydrodynamical test problem that was presented in
and Osher [11]. One possible MHD analogue of that test problem consists of the in
action of a right-going Mach 5 shock with a left-going Adfiv‘'wave that is propagating
towards the shock. The Aléri wave propagates through the preshocked gas which is tak
to be a lowgs plasma. Thus in the vicinity of the shock, if the switches are to opera
effectively, they should switch back to a form that conserves total energy. The exam
that we describe in detail in the next paragraph shows that the switches do indeed ope
effectively.
The problem is one-dimensional and is set up with 800 zones alongdiis spanning

the interval [-0.5, 0.5]. The preshocked fluid is at rest and has unit density and a press
of 1072. The preshocked fluid initially occupies the regier0[1, 0.5]. The postshocked
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FIG. 3—Continued

fluid occupies the remaining region and has a density of 5 units, a pressure of 0.2899¢
anx-velocity of 0.473286. The magnetic field in tkedirection has a strength of 10 units.
The transverse velocities and magnetic fields in the shocked fluid are set to zero. A
propagating Alf€n wave is initialized in the unshocked fluid with transverse velocities a
magnetic field given by

¢ = 27x/8 (16)
V1 = —0.2(cog¢) ¥ + sin(¢)2) a7)
Br = —0.2V/47 (cog¢)§ + sin(¢)2). (18)

As the simulation evolved, the ghost zones on the right boundary were given values fo
transverse velocity and magnetic field that were consistent with those that are need
sustain a left-going Alfeh wave. We set = 1.5. A Courant number of 0.8 was used. The
problem was stopped at a time of 0.2.

In Figs. 4a—g we show the density, pressutey, andz-velocities, ands andz-magnetic
fields for this problem at the final computational time. The problem was simulated us
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FIG. 4. Test problem for the interaction of Aléri waves with a magnetosonic shock as described by
Egs. (16)—(18) at a time of 0.2.

Strategy 2. We see from Fig. 4 that the Adfvivave has propagated into the shock, thereb
perturbing it. Because the Alérn wave has a nontrivial strength the perturbations to the ma
netosonic shock are substantial. The shock front responds to this perturbation by launc
right-going and left-going magnetosonic waves. The density and pressure variables s
that by the final time in the simulation the waves have reached the right boundary. The p
for the transverse velocities and magnetic fields show that a portion of themlfiave
propagates to the left of the shock. In the unshocked fluid the transverse velocities
magnetic field fluctuations in the right-going magnetosonic waves interact with the cor
sponding variables in the left-going Aw'wave. This results in a complex superposition o
sinusoids for the transverse velocities and magnetic field in the unshocked gas. The prol
was run again without any of the pressure positivity switches. The results were seen ti
identical with those in Fig. 4. This demonstrates that the switches do operate effectiv
and robustly and do not damage the flow by invoking the use of Eq. (3) in regions of 1
flow where its use is not justified.
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FIG. 4—Continued

4. CONCLUSIONS

In this paper we have constructed strategies for ensuring the positivity of the p
sure variable. They are applicable when performing MHD simulations using higher ot
Godunov schemes. They become especially relevant when the pressure is a very smal
tion of the kinetic energy or the magnetic energy. We have constructed two strategie
ensure the positivity of pressure. Strategy 1 does this but is not selective enough to ¢
us to evolve the pressure variable with small discretization errors, i.e. discretization el
that are much smaller than the overall discretization error of the numerical scheme it
By constructing numerical examples we show that this is a consequence of Strategy
being selective enough in how it invokes the entropy-based Riemann solver. Strategy
contrast, is shown to be discriminating enough. It allows us to evolve the pressure wit
accuracy that scales as the pressure variable itself and is far smaller than the accurac
which the rest of the equations are evolved. We make this point with an example. Strate
is thus shown to be the method of choice.

It also helps to build one’s perspective by comparing the method of Linde and Roe [2]
maintaining pressure positivity and the method developed indRgli[1] and ourselves in
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this paper. In the former method one locally reduces the order of accuracy to get pres
positivity. In doing so the Riemann solver’s ability to produce local dissipation is in fa
utilized. There is a strong tie that the method of Linde and Roe [2], therefore, has to the fc
of the monotonicity-preserving interpolation that is used. The arithmetic associated with
method also becomes increasingly intractable if interpolation that is better than piecev
linear is used. By contrast the latter method seeks to locally improve on the accuracy, e
to the point of trying to update the entropy density with an accuracy that is better than t
of the rest of the equations. The normal Riemann solver in the conserved variables is
viewed as being too undiscriminating in how it introduces dissipation. Thus, an attemp
made to selectively switch to another entropy-based Riemann solver that is less dissipe
In doing so we have to introduce a reliance on switches that automatically identify the lo
regions in the flow where it is acceptable to make this switch. No constraints are put on
form of the interpolation that is to be used. In fact as the interpolation accuracy is improv
say by the introduction of a very high order essentially nonoscillatory interpolation scher
the dependence on the strategies developed here for maintaining pressure positivity c:
selectively reduced.
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